Airfield Concrete Mixture Optimization

SWIFT Conference Calgary, Alberta

Gary L. Mitchell, P.E. Director of Airports and Pavement Technology

Aknowledgement

John R. Anderson, Ph.D., P.E. 4 Lawn Street Oviedo, FL 32765 407-365-7229 jranderson@tigerbrain.com

TIGERBRAIN ENGINEERING, INC.

Concrete Optimization

Why?What?How?

Why?

Avoid Sliver Spalls!

What is Mix Optimization?

Combined Gradation

- Dense graded aggregates
- Concrete 85% Aggregate
- Aggregates control Concrete
- Similar in concept to
 - Granular Base
 - Hot Mix Asphalt

Quality Concrete

Quality is not about Strength
Quality is not about proper air content
Quality is not about concrete slump
Quality is not about 100% Inspection

Quality Concrete Is:

• Durable Concrete

- No sliver spalls
- No scaling, surface spalls
- No reactivity / aggregate durability issues

Quality Airfields Are:

- Functional
- Proper Drainage
- Slab size/thickness/layer strengths
 - If incorrect = cracked slabs

PCC Mix History

- Dense-graded prior to WWII
- After WWII began asphalt industry;
 - intermediate aggregates for aspahlt
 - PCC became gap graded
 - Admixture use increases
- Shilstone Mixes
- USAF Combined Gradation 1997

Gap-Graded PCC Mixes

Common Specifications - ACI

- No. 57 or No. 67 Stone
- ASTM C33 Sand
- Produce gap-graded mix
 - Large aggregate + sand
 - High paste demand to fill voids between large aggregate

ASTM C33 No. 57 Stone

Gradation

		ASTM	ASTM
SIEVE SIZE		MIN	MAX
1.5 in.	37.5 mm	100	100
1.0 in.	25.0 mm	95	100
0.5 in.	12.5 mm	25	60
NO. 4	4.75 mm	0	10
NO. 8	2.36 mm	0	5

Typical Sand Gradation

Can Coarse Sand be Specified?

Aggregate Grading

Gap Continued

Large aggregate Issues
 Harsh, difficult to place and finish
 Desire to add water, sand, superplasticizers

 All bad for airfield paving

 Paste and mortar required to fill voids

 Work concrete to finish, paste/mortar at edges

Gap Mixes

Paste and mortar required to fill voids

- Work concrete to finish
- Paste/mortar collect at edges; create weak pockets to spall
- Slipform edges slump; rebuild by hand, paste/mortar pockets and spalling

How Do I Optimize?

1997 USAF ETL 97-5
UFGS 32 13 11
P-501 Allowable
P-50X

Shilstone

Optimization Guidelines

- Use Combined Materials
- Workability and Coarseness Factors
 - WF: Percent Pass No. 8 Sieve
 - CF: 3/8 Retained % / No. 8 Retained %
- Percent Aggregate Retained
- 0.45 Power Curve

USAF Constructability Chart

WF & CF

Aggregate Proportioning Guide

Figure 3.3 Workability Box Within Aggregate Proportioning Guide

WF & CF = "Big Box"

Big Box is mandatory
Outside, mix will not work
Inside, mix occasionally has issues
Percent Retained & 0.45 Power Curve help refine

Percent Retained

- Highest Peak on 1/2 inch sieve or larger
- At least 4 points difference between peaks
- Sum of two adjacent points is 13% or more, except for maximum size, No. 100 and No. 200 sieves
- No more than 2 low points between 2 peaks

Percent Retained

Percent Retained - Equal Peaks

TIGERBRAIN ENGINEERING, INC.

Two Peaks -Water Sensitivity

Two Peaks

0.45 Power Curve

0.45 Power Curve

Never exceed upper solid line
Never consider exceeding upper solid line
Avoid exceeding upper solid line
Do not parallel the maximum density line

-Upper Solid Line Controls Sliver Spalls
-Especially in the No. 16 to No. 100 Sieves
-Parallel Contributes to Sliver Spalls, difficult to work

0.45 Power Curve - Good

Do Not Parallel Max Density

0.45 Power Curve - Good

0.45 Power Curve - Good

Aggregate Shape & Size

Slipform needs crushed aggregate
Sideform may use gravels or crushed
Maximum size –

let the contractor choose ¾ inch or larger
Larger max size requires more intermediate sizes
1.5" rock is not available everywhere

To Be Wise

• This is all "paper" analysis

- Must make trial batches with batch plant
- Must adjust proportions to optimize mix
 - do it with the contractor
- Must pave and adjust proportions to paver and site
- *Combined* proportions are the approved mix

Daily Paving

- Gradation of each stockpile prior to paving
- Mathematically check combined gradation
- Adjust individual batch weights to achieve target combined gradation
- If WF is <u>+</u> 3pts and CF <u>+</u> 5 pts,
 - May see placement workability changes
 - No measurable strength changes

How Do you Know its Right?

Not Quite There

But it looks good?

But after fixing the plant...

Memphis ANG

Memphis ANG

San Juan R/W 10-28

San Juan R/W 10-28

Got it!

Mineral Admixture

Fly Ash
 Class F - >15% and < 25%
 Class C – be careful (chemical analysis)

Chemical Admixture

Air entraining

- Set-retarding
- Accelerating
- Water reducing
- Must be compatible with other components

Mineral Admixtures

Flyash

- Improves Durability
- Increases Water Demand
- Increases AEA
- Sand Reduction
- Class C contains calcium
- Hot ↑ Cold ↓

GGBFS

- Cementitious
- Improves Durability
- Improves Workability
- No Bleed Water
- Stiff Mix
- Sensitive to Vibration
- Saw Cutting Critical

Basic Cement Reaction

$2 C_3 S + 6H = C_3 S_2 H_3 + 6 CH + heat$

Additional Water yields no additional C-S-H 2 C_3 S + 8 H = $C_3S_2H_3$ + 6 CH +2H + heat

Min w/c for full hydration < 0.32

Pozzolans

Reactive Silica from Ash, Slag, Fume

- Bonds Chemically with CH formed by cement reaction
- Slower Strength Gain
 - Takes time to get started
 - No heat early
 - Doesn't retard but does dilute
- Improves Durability
 - Fills existing pores
 - Removes reactive components

Pozzolanic Reaction

CH + S = C-S-H

Additional Curing Time
Lower early strengths
Higher ultimate strengths
Reduced permeability

Pozzolans: Typical Quantities

Fly Ash: 15 – 25 %
25 % max if deicing salt exposure
Help mitigate ASR??
Slag: 40 – 60 %
Silica Fume: 5 – 12 %
Cost
High water demand (HRWR typically)

Pozzolans: Effect of Replacement

Fly Ash: 20%

1.2 to 1.3 to 1 (or higher)
130 PCY to replace 100 PCY of cement

Slag: 50%

1 to 1 replacement

Silica Fume: 7%

Very high cost
High strength and durable

What is ASR Potential?

- Potential Exists When
 - >5 lbs/cu yd alkali
 - Moisture
 - Reactive Aggregate
- Concentrated Alkali's
 ASR Potential

Control (1 N NaOH Soak Solution)

Effect of Fly Ash & Slag Additions on ASR Expansions

NORTH CAROLINA

(Modified ASTM 1260 Test - 50% conc. Potassium Acetate)

Optimize Concrete Mixtures coupled with SCM can lead to longer lasting – more durable airfields Pavements.

Questions?

